Musculoskeletal Robots - new publication by Richter et al.
Anthropomimetic robots sense, behave, interact, and feel like humans. By this definition, they require human-like physical hardware and actuation but also brain-like control and sensing. The most self-evident realization to meet those requirements would be a human-like musculoskeletal robot with a brain-like neural controller. While both musculoskeletal robotic hardware and neural control software have existed for decades, a scalable approach that could be used to build and control an anthropomimetic human-scale robot has not yet been demonstrated. Combining Myorobotics, a framework for musculoskeletal robot development, with SpiNNaker, a neuromorphic computing platform, we present the proof of principle of a system that can scale to dozens of neurally controlled, physically compliant joints. At its core, it implements a closed-loop cerebellar model that provides real-time, low-level, neural control at minimal power consumption and maximal extensibility. Higher-order (e.g., cortical) neural networks and neuromorphic sensors like silicon retinae or cochleae can be incorporated.
Read the full article here.